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1. INTRODUCTIONI
An important problem in turbomachinery is the prediction of

the flutter boundaries of the compressor. In order to compute

these boundaries, the unsteady aerodynamic forces need to be

understood. The aerodynamic causes of flutter in a compressor

can be very complex, for examp2 !, the interaction between the

flows induced by the rotor and stator. However, an important

class of flutter is caused by a relatively simple aerodynamic

flow due to the vibration of the blades on a given compressor row

without the added complexity of exterior interactions. This

latter problem is the simplest unsteady aerodynamic phenomenon of

interest. In a compressor the oncoming velocity varies along the

compressor blade, increasing from subsonic speeds at the hub to

perhaps transonic speeds at the tip; it is the prediction of

unsteady transonic flow in a compressor that is the most

difficult. This report is concerned with the prediction of

flutter in a vibrating compressor row when the flow is transonic.

The work reported here is concerned with solving the classic

high frequency unsteady transonic small disturbance equation for

cascade flows. A second topic is the validation of the cascade

theory of Reference 1.

A major problem with potential theory is that it is not

valid (Reference 2) when shock waves are present and, as a

consequence, shock locations are not predicted adequately for

medium to strong shock strengths, althouqh the aqreement for

flows with weak shocks is acceptable. This disadvantage of the

potential formulation can be overcome by modifying the theory to

give the correct shock jump. This has been done by Nixon

(Reference 3) for the steady transonic small disturbance (TSD)

equation and by Kerlick, Nixon, and Ballhaus (Reference 4) for

the unsteady low frequency equation. An extension of theI



work in Reference 4 is reported in Reference 5 which is attached

as Appendix 1.

Most of the numerical methods for predicting unsteady

transonic flow stem from the work of Ballhaus and Goorjian

(Reference 6), who developed an implicit algorithm to solve the

low frequency TSD equation for isolated airfoils. An extension

of this algorithm to high frequency motion was made by Rizzetta

and Chin (Reference 7). For cascade flows a version of the

Rizzetta-Chin algorithm was used by Kerlick and Nixon

(Reference 8) to develop a method for cascade flows for

unstaggered cascades. An alternative to the use of the unsteady

TSD equation has been considered by Verdon and Caspar

(Reference 9) who use a time linearized perturbation of the full

potential equation for staggered and unstaggered cascades in a

subsonic flow.

In a cascade flutter analysis the dominant parameter is the

interblade phase anqle which can determine the conditions at

which the blade will flutter. In a numerical method, such as

those discussed earlier, a flutter calculation can involve

computing a test case for each value of the interblade phase

angle. This is computationally expensive and, in order to reduce

the cost, a technique developed by Nixon (Reference 1) may be

used. This technique, which is based on indicial theory,

decouples the cascade problem into a series of elementary

problems, which are parametrically related, and only one solution

need be computed. This elementary solution consists of a number

of blades, all stationary with the exception of one blade which

undergoes a step change. Once computed, the full unsteady

solution for any frequency and interblade phase angle can be

constructed by a judicious superposition.

-2-
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In a previous report (Reference 10) the results obtained by

the cascade code described in Reference 8 and the indicial method

described in Reference 1 are examined. Several areas of concern

arise in this examination. First, for a flat plate at subsonic

conditions, the method of Kerlick and Nixon Reference 8 did not

agree very well with the results of Verdon and Casper (Reference

9). Second, the indicial method did not give the super-resonance

phenomena noted by Verdon and Casper. It is desirable that these

points be clarified before further work is done. The question of

super-resonance on the indicial method has been answered by

J including a (nominally) infinite number of blades in the

cascade. This is done analytically rather than computationally.I
In the above studies some questions regarding the far field

boundary conditions used in cascade computations are raised. It

is possible that the differences in the boundary conditions

account for the difference in the flat plate results noted

above. A discussion is given in the text.

In order to compute flows with strong shock waves the

techniques of References 4 and 5 have been incorporated into the

computer code. The details are given in Appendix 1.

The final issue to be addressed in the report is that of

nonunique solutions. It has been known for some years that the

potential equation gives nonunique solutions (References 11, 12)

for isolated airfoils. It is established here that these

solutions also occur for steady cascade flows. For unsteady

flows the unsteady perturbation seems to be unique although the

perturbation is around an artificial value of lift. These

computations are for a reduced frequency of unity and is in

I
I
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agreement with the results of Williams et al. (Reference 13) for

isolated airfoils. However, for low frequencies an artificial

behavior is evident for isolated airfoils (Reference 13) and may

occur for cascade flows.

The analyses of Steinhoff and Jameson (Reference 11), Salas

et al. (Reference 12), and Williams et al. (Reference 13) are

essentially numerical experiments. Nixon (Reference 14) has

attempted a more analytic study of the problem. Reference 14 is

attached as Appendix 2. In Reference 14 Nixon has shown that for

isolated airfoils there is the possibility of multiple solutions

due to the presence of eigensolutions in the equations. There

does not seem to be any way to avoid these solutions; in fact it

is indicated that a stable algorithm helps the appearance of the

eigensolutions. In the present work the analysis of Reference 14

is extended to include steady cascade effects. It is found that

the effect of the eigensolutions varies as the inverse square of

the gap. It is likely that for practical cascade flows the

nonunique solutions do not arise.

2. COMMENTS ON THE ACCURACY OF THE NEAR CASCADE CODE

In the previous work on this contract, reported in Reference

10 a discrepancy between the results of the computer code CTRAN,

developed under Contract N00018-81-C-0169, and the code of Verdon

and Casper (Reference 9) for the subsonic flow through a cascade

of flat plates was noted. Since the flat plate is a classical

case this is a disturbing error. Hence some thought has been

given as to the reasons for the disagreement.

For subsonic flows the Verdon and Caspar equation is

equivalent to the small disturbance equation

-4-
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(l-M~cos2 8) + (1_M2 sin 2 )* -2 mc~cs *x 2 sinecos8f~

2cM2 sini M2 c2  (1)

U° yt *u2 Ott 0

where e is the angle the oncoming stream makes with the x-axis.

The equation used by Nixon and Kerlick (References 8 and 10 ) is
the classic, isolated airfoil equation

22 M2 c 2

(1-_ + 2- M* * M 0 (2)
xx yy U b xt U2 0tt (

Hence, it can be seen that the Verdon and Caspar equations

include the extra terms due to the y derivatives which are

necessary to model highly curved blades. The boundary conditions

for both equations are that there is no flow through a solid

boundary. For the case of a flat plate at angle of attack a the

boundary condition is

y(xi 0) - + (x-x O ) t  (3)

where x o is some pitching axis.

If 8 is small, Equations (1) and (2) become identical. In

the comparisons in Reference 10 8 is zero and, thus, the

discrepancy reported cannot be due to the different equations. A

possible cause of the discrepancy may be the different far field

boundary conditions (see Section 3) but this has not been

investigated.

3. FAR FIELD BOUNDARY CONDITIONS

The far field boundary condition used by Verdon and Caspar

is that # has the asymptotic form upstream of the cascade

-5-



f(xy) = b exp(iqjy) exp[(iM.U .S; dj) (x-x_.)/O 2  (4)

where

qj= (2]j+o)/h, 6 = M(w + Usin 6 g)

02  2 2 - 2  2o 8) . 3 2qj2_ a M . i2 d . (6 ) 2 2
= a M I ) d2 Cos 2 = )M a 2  (5)

and a is the speed of sound in the undisturbed flow, a is the

interblade phase angle and w is the frequency of oscillation.

x_. denotes the upstream computational boundary and h is the

cascade gap.

The constant bj is given by

b. = h- l+h O(E,n)exp(-qjyl)dn (6)

Far upstream of the cascade a specified boundary condition is

that the velocity components are given.

Thus as x + - I

*(x.,) + Uw n sin e (7)

In the limit as h + -, qj + 0 and, from equations (6) and (7)

b. + U sin 0 (8)

In the study of asymptotic behavior there are two limits that can

be examined as the gap approaches infinity. First, if the point

x_. approaches -- faster than h + f then the effect at x -. will

always be that of a cascade. Second, if the point x does not

-6-
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approach infinity faster than h + - then the behavior at x will

be that of an isolated airfoil. Mathematically the first case is

when

lim -- 0 (9)

while the second case is when

lim= 0 (10)+ "h

In the case of an isolated airfoil the classic limit, on

y = 0 as x +- , is (see, for example, Reference 15)

* (x,y) + e iM2- flx e iKix (11)

(Klxl)
1/2

where

= V/(-M 2 ) , K = M fl (12)

As x + -- the value of *(x,y) given by Equation (11) decays as

jxj - 1/ 2 whereas the form given by Equation (4) behaves as

1 2
U., sin 8 exp (i[M t K) (x-x_.)}

j=-i (13)

and b. + constant as h + -. Note that as h + - the number of
I

blade gaps must reduce to two with j = t 1 denoting the far field

blades at n = * -.

Equation (13) does not give the isolated airfoil result

as h + - if the limit of Equation (10) is imposed. It is

suggested that this limit is the correct one to use for a far

field computational boundary since x_, must be finite to be of

any use.

-7-



4. STRONG SHOCK THEORY

In Reference 5 a modification to the unsteady high frequency

small disturbance equation is described which alters the shock

strength to give the Rankine Hugoniot value. These types of

modifications improve the accuracy of the small disturbance

equation. Reference 5 -is attached as Appendix 1.

The theory of Reference 5 has been applied to the cascade

code CTRAN. Since CTRAN and the base code XTRANL used in

Reference 5 are similar the mechanics of coding the appropriate

modifications proved to be easy. A detailed description of the

modifications is given in Appendix 1. Typical results for a

cascade are shown in Figures 1 and 2. The "strong shock"

correction for a cascade is similar to that for isolated airfoil

in that the shock waves are weakened and move forward. The

section is a NACA0012; the amplitude is 1/4*, M.= 0.845 and h =

30. The large gap is used to indicate the effect of the

modification. For more realistic values of the gap the strong

shock modification may prove to be unnecessary because the shock

waves in such conditions are relatively weak anyway unless the

flow is nearly choked.

5. COMMENTS ON THE INDICIAL THEORY FOR CASCADE FLOWS

In Reference 1 a method of computing the unsteady flow

through a cascade for any interblade phase angle using only one

set of computational data is described. The computational data

are calculated for a cascade with only one blade moving and the

others held stationary. A further simplification is that only

the indicial response for the cascade needs be computed; from

this result the flow due to arbitrary time dependent motions can

be constructed. In the previous report on the contract

(Reference 10) attempts to compute the unsteady flow through

-8-
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(CL - CL )A
= O A (60)

CL (h-h0 )2

where CL  is the value of CL as h + -, ho is some value of h to

be deterxined and A is a constant.

The computer code XTRAN2L, used for isolated airfoil

problems, was modified to treat a steady cascade by the addition

of periodic boundary conditions. A series of calculations for a

NACA0012 cascade at M = 0.845 and a = 0 was performed with

various values of the gap, h. The results are shown in Figure 6.

If the value is h when CL is zero (h = 22) and the value of

CL at h - 25 are used to compute ho and A in Equation (60) then

CL can be computed. This value is also shown in Figure 4 and

agrees very well with the computed results. This good agreement

indicates that the compatibility equation, Equation (55),

represents the behavior of nonunique solutions and that the

general conclusions given in Appendix 2 apply to cascade flows.

6. CONCLUDING REMARKS

A number of points arising from previous work on cascade

flows have been investigated and most have been clarified. There

is still some question as to the correct far field boundary

conditions to apply to unsteady cascade computations. However,

the existence of nonunique solutions to the potential flow around

cascade has been verified and examined.

-20-



I
If the gap is large the computationally effective flow field

will be similar to that of an isolated airfoil since U and Au

will approach zero as n + -. Consequently, the main

contribution to the field integral will come only from values of

u up to some distance h from the blades. In other words

jh f(n)dn fo9f(n)dn (57)

where h is independent of h. Consequently the field integrals in

Equations (55) and (52) can be written, to a first approximation,

as

n=o E~+I f1 1 I(g 1 If .ql+ I f)2 I-ffl

+ 1 H1 (x,y) (58)
h

and

I - f A AK (n) f di + 1H(, 59
I n= Wf x 1 1 h 2 H2 xy)5)

where H, (x,y) and H2 (x,y) are independent of h and f, is

similar to the eigensolution for the isolated airfoil. g, and

If 1 are associated with fl" S1 is a subset of S1 with a

range 0 < n < h rather than 0 4 q < h.

By examining Equations (55), (58) and (59) it can be deduced

that the compatibility equation, Equation (55), is similar to

that of the isolated airfoil case, with the addition of a

perturbation depending on the parameter 1 . From the general

transonic perturbation theory of Reference 16 it is expected that

the variation of CL in a nonunique solution will vary as h2.
h

If the perturbation parameter is of the form 12 it follows

that the lift coefficient for a cascade is of the orm

-19-



If a function g(x,y) is defined as

f(o) (x)

g(x,y) = fl(x,y) - 1 (50)

0

Then

Au g/(i) (51)

From Equations (42) and (50)

U ) g = _f AKx(n)fndS = I (52)S n=0 4w S 1 f

Using Equations (51) and (52) then gives

U 2 (53)

Au = g + If (54)

Substitution of Equations (53) and (54) into Equation (47) gives

- 2 )2 + (g+If) 2 1 = uT - f S5 f (Ug+,f) 2
g+If 2 If+g f TL n=o

+ (_9_ ) 21 dS1  (55)
g+If

This equation must have a nonzero solution for fn if a nonunique

solution exists.

Consider now the case when the gap is large.

To a first approximation

ii (x~y) (0) 1-1
-U (xy) + 2 UT (x,y) (56)TL L h L

where u ( O ) is the value for the isolated airfoil and u ( I ) is aL T L
function independent of h.

-18-



~f(o) = fn 1(,o1

n n

An alternate form of Equation (42) is

F xx+ Fyy = n fnx (44)

with the boundary-condition

F y(x,*nh) 0, (45)

where

F(xy) = x {f( E,y) [-(,y)](o)()d

= fX{Au(ty) - Au(&,o)}d4 (46)

Equation (44) and (46) are similar to Equation (44) and (46) in

Reference 14 and the nonuniqueness analysis is then similar to

that in Reference 14.

The symmetric part of Eauation (37) is

-(2-AU2) . U - n-0 (n) (U2 + Au2 )dS (47)
2 (- ) T L n=0 4W1

where

.(n) [K (n) x,y) + K (n)c ,-y)] (48)t.x &Kx tfx

and

-T (x,y) = 1 Vo( 2 (4)

UTL n=-- [ (x-&) + (y-nh) 2

-17-



The asymmetric part of Equation (37) can be written as

4DM AV 0 (X-O Au a(y+nh)
& au I T"f02 2 dC + -j, f 2 2 j

n- Ix-&U + (y-nh) I [(X-O +(y+nh)

- 7 fS f[K EX, - K X'x ) AuudS 1(38)
n=0 11

From Equation (28) and (30)

AuU-(2n+l)Au - f n(39)

This equation specifies Au in the flow field in terms of fn

since Equation (38) also specifies Au in the flow field in terms

of Au 0 there m'ust be a compatibility relation.

Equation (38) can be written as

AU - Auu 7 - I fS f AK (n) [Auu(2n+l)Au )dS (40)
nmo 4 1 1 &X 1

where

AK(n [K(n)(x ,y) K- n (x,-y)] (41)

Using Equation (39), Equation (40) can be written as

(1-u fo f- 71 ISJK(n) f S(42)

1 (1-u- 0) 1W 11

and

f(0)

Au 0
u0- f(O)

Au -- (f 1 + _ J(43)

0



I
where

L(v ) is an integral operator on vo

such that

_ - L(V 0(x- )
2w 0o2+ 2 d  = (33)

n=-0 [(x-) +n2h

The fact that a lifting solution to the linear problem exists

such that

Au = L(v ) (34)

is significant evidence that L(v ) exists.

Equation (32) can be written in the form

0 = - i f K ( n ) {Au(E,n)U(E,n) - (2u+l)[Au -L(-v)])dS 1  (35)

n=0 1 &Yo 0

Equation (44) is similar to Equation (30) and indicates that a

nonzero function, fn' exists, which satisfies Equation (30), and

is given by

fn = Au(En)u(En)-(2u+l)[Au - L(V)] (36)

where the right-hand side is generated from a real transonic

solution.

Now differentiate Equation (21) with respect to x, giving

2 AVo (X-) Au0 (y-nh)

n=-- [(x-) + (y-nh) [(x-) + (y-nh)

- f sK u 2dS (37)

-15-



where

(xo) [v(x,+o) + v(x-) (26)
(v(xo)+ o)0)

and it has been noted that, because of periodicity,

Au(.t,nh) = Au(C,o) = au °  (27)

The subscript o denotes a value on y = 0. Equation (25) can be

written as

V(x,o) = -no fK(n) [Au(,n)u(t,n) - (2n+l)AuoIdS1  (28)

where S1 now covers one blade gap

K(n)= I ln[(x-t) 2 + (n-nh-y)2  (29)4w 1

Equation (28) is similar to one in Reference 14 and for a lifting

solution to exist when

v(xo) = 0

a function, fn' must exist such that

-- f K(n)fndS = 0 (30)

and

f n0 (31)

In order to establish the existence of fn it is necessary to

write Equation (25) as

- 1 M (Au -L(v )) (x-0) 12

0 1 (2 2 2 dt) - i. f fK u dS (32)
n0- f(x-) + n h j 0

-14-
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Analysis of Nonunique Solutions

A cascade is composed of an infinite number of blades or

airfoils and an integral representation of the TSD equation can

be constructed in a similar way as that for an isolated airfoil

(described in Reference 14) using the principle of

superposition. Thus,

#XY [v(nAK (n) Id)12~Ku2dS (21)
nl=-40 0 n

where

K(n) = 1-,Ini (x-g)2+ (nh-y)21 (22)O =

and

K = 1 nI (x- ) 2 + (y-n)21 (23)

Differentiation of Eauation (21) with respect to y gives

V(X,y) = 1 {S O  Av(g,nh)(y-nh) d&- ' AU(,nh) (x-) d9
n=- [I(x-) 2+ (y-nh) 2 (x-) 2+ (y-nh) 2

1 sfK u 2d s

The operator "A" is defined as

Af(x,y) - 1 [f(x,+y) - f(x-y)] . (24)
Av

On y = 0 the first sum yields the value AX; note that since

Av(&,n) is periodic about each blade the terms for n = * N

cancel. Equation (24) can thus be written as

v~x~o 1- - 1 Au(Eo)(X-& - u2d(5
v~x~o)2w '~o2 2 2 2~K udS (5

n- ((x-&) + n h 2 o

-13-



addition to the cascade result, results for both a free air and

for a solid wall boundary condition are shown; in these cases the

far field boundary is at the same location as for the cascade

result. It can be seen that the behavior with the various

boundary conditions is different even though the boundary is at a

nominally far field location. The behavior of a nonunique

solution with decreasing gap is shown in Figure 6 and is compared

with the result for a solid wall boundary condition. The

difference is quite significant. It also appears that the

cascade effect inhibits the appearance of the nonuniqe solution

since it does not appear for practical gap/chord ratios for this

particular section.

The cascade code was used to investigate the behavior of the

nonunique solutions in oscillatory flows. These oscillatory

solutions were started from either a zero lift condition or a

nonunique steady state. The results are shown in Figure 7; and

it can be seen that the oscillatory perturbation is nearly

sinusoidal but is about a non zero lift. The section is the

NACA0012, M = 0.845, the pitch amplitude is 1/40 and the reduced

frequency is 1.0. It is also noted that the solution starting

from a zero lift condition is not converged but appears to be

approaching the other results. As a final result the cascade

code with the strong shock conditions was run for the same case

and the results seem to be of the unique variety. The steady

state solution is symmetric in this case in order to provide

symmetric controls for the strong shock addition; asymmetry is

introduced by allowing a non zero mean angle of attack for the

first 200 time steps.

It is desirable to examine the behavior of these nonunique

solutions and this is done in the next section.

-12-



CL will be infinite. For the flat plate reported case by Verdon

and Caspar with M., 0.5, h = 1, v = 1 Equation (20) gives, for

p = 0,

0 = * 33.10

which is the interblade phase angle for resonance found by Verdon

and Caspar.

Results for the flat plate case, computed using Equation

(24) and 100 blades, are shown in Figure 3. In this calculation

the total number of blades in the numerical computation is 13 and m =

3. A transonic case for a NACA0012 section, M.= 0.75, h = 2.0

is shown in Figure 4.

Nonunique Solutions

Over the last six years nonunique solutions to the transonic

potential equation have been found. (See References 11 and

12). In the initial cases these consisted of lifting solutions

for the flow around symmetric airfoils at zero angle of attack.

Later, nonunique solutions were found for nominally lifting

conditions. These nonunique solutions have been found for

isolated airfoils and for airfoils in wind tunnels; unsteady

solutions have also been reported in Reference 13. In the

present work, nonunique solutions have been found for cascade

solutions.I
In order to find the nonunique solutions the cascade code,

CTRAN, developed under previous work on the contract, was used.

Also, a variant of the code XTRAN2L, modified to give periodic

boundary conditions, was used. Only steady flows are considered

at the moment. For a gap of 50 chord lengths the range of Mach

numbers for a nonunique solution are shown in Figure 5. In

-11-



15). The lift induced on a blade is proportional to the induced

upwash parameter, which is given by Equation (16). Hence it

follows that

C CL 1 ll/2eiK(Inl-m)R (17)CLn Lmn

where the relation y- = nR is used, and m is a given blade beyond

which Equation (16) is .a good approximation. It is assumed that

C L is known. Note that the actual value of v(x,y) is not given

by Equation (16) since this result only holds if there are no

other blades. However, the actual upwash will vary with y in a

form similar to Equation (16). Using Equations (14), (15) and

(24) gives

m-1 -ino (m 1/2
C = m CLn e + CL exp[iK(n-m)-ina

n=-m+l n n=m m

+ ()/2 exp[-iK(n+m)h-ina] (18)
n=-= -m

It can be seen that the effect of the cascade blades

diminishes as n-1 /2 and hence a large number of blades is

necessary in the initial computation of CLn unless the

approximation of Equation (17) is used. It is also of interest

to examine further Equation (M). The two infinite sums are

bounded (see Appendix 4) unless

* K* - a = 2p1 (19)

where p is an integer. Thus for an interblade phase angle, given

by

a = * KF - 2pn (20)

-10-
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cascades are described. The rGsults did not agree very well with

those of Verdon and Caspar (Reference 9) and hence, some

examination into the causes of the discrepancy is necessary.

In Reference 10 the computed data are for a seven blade

cascade and it is possible that this restricted number of blades

is a cause of the discrepancy. This aspect is elaborated below.

The lift given by the theory in Reference 1 is

CL (t) CL (t - n a) (14)
n= n

where CL is the lift induced at blade zero by the motion of theCn

nth blade with the other blades stationary and a the interblade

phase angle.

If the flow is harmonic in time,

CL(t) = C Le

(15)
C (t -o)= e iw(t - no)

n n

In a cascade the unsteady flow induced on blade zero by the nth

blade can be characterized by the asymptotic form of the unsteady

flow provided the nth blade is sufficiently far from blade zero

(for example several chord lengths). The asymptotic behavior for

the induced normal velocity is (Appendix 3)

v(x,y) Z A eiKlyl (16)

where A is a complex constant and -y = (1-M2)1/2y• This result

is obtained from classic subsonic airfoil theory (see Reference

-9-
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1. INTRODUCTION

The most common methods of predicting steady flow aero-

dynamic characteristics at transonic speeds are either the

Transonic Small Disturbance (TSD) theory (Ref. 1) or the

Full Potential Equation (FPE) theory (Ref. 2). The more

accurate Euler equations solutions (Ref. 3) are expensive to

obtain, although for flows with strong shock waves such solu-

tions are essential. The FPE theory is based on the assumption

that the flow is isentropic and irrotational and generally has

a (numerically) exact treatment of wing boundary conditions.

The TSD theory is an approximation to the FPE theory and thin

wing boundary conditions are used in the solution procedure.

One of the advantages of the TSD theory is the flexibility in

deriving the approximate equation. This flexibility is generally

utilized by a choice of a transonic scale parameter.

The basic assumptions of isentropy and irrotationality in

both these theories are only valid when there are no shock

waves (Ref. 4) in the flow. Although the potential theory is

valid strictly only for shock-free flows, the results obtained

by such a theory for flows with shock waves are sufficiently

close to experimental data for practical use, provided the shock

waves are weak. The generally accepted definition of a weak

g shock is when the local Mach number just ahead of the shock is

less than 1.3. Thus, when both TSD and FPE solutions are

compared to the more realistic Euler equation solutions it is

found that the agreement is satisfactory provided that the

basic restriction to weak shock waves is not violated. The

use uf thin wing boundary conditions can also introduce errors

into the TSD solutions.



If the flow has strong shock waves, however, then there is

considerable disagreement between both TSD and FPE solutions

and Euler equations solutions. Generally the predicted shock

location for the potential theories is much further aft than

that for the Euler equation solutions. The causes of the

error in the shock location in the steady TSD theory for two-

dimensional flow have been examined in Reference 4 where the

basic justification for a correction procedure has been derived.

The basic hypothesis of the theory is that the error in shock

location is primarily due to the stronger shock predicted by

TSD theory compared to the shock strength of the Euler equations.

It is also assumed that if the shock strength is suitably

corrected then the shock location should be approximately

correct. These correction theories have been applied to both

steady (Ref. 5) and unsteady (Ref. 6) solutions of the TSD

equation and to the steady FPE.

The commonly used potential theories are based on Crocco's

theorem which states that if the entropy gradient in the flow

is negligible then an inviscid flow exists with negligible
vorticity and hence a velocity potential derived under the

assumption of zero vorticity gives a good approximation to

the flow. However, application of Crocco's therem requires that

mass, momentum and energy be conserved and since in a potential

solution with shock waves momentum is not conserved, it can

be seen that the transonic potential theory is not consistent

with its basic assumptions. However, since transonic potential

theory does give good results for flows with weak shock waves

its use can be justified on the basis of practicability alone.

A more flexible criteria for developing consistent theories is

to introduce (Ref. 4) the idea of minimizing a weighted com-

bination of source errors at the shock wave. For example, if

mass and energy are conserved through a shock then the conven-

tional potential theory results, or, if a suitable weighted sum

of the mass, momentum, and energy errors are put to zero then a

2



potential equation with a specified shock jump results. Thus,

a potential theory with a Rankine-Hugoniot shock jump ban be

obtained.

In Reference 5 the correction to the TSD equation is

obtained by computing two steady state solutions and then

using an interpolation technique to give the required

solution. This technique is not really feasible for unsteady

flow since the correction procedure is required for each

time step in the two TSD solutions, with different scaling

parameters, and an interpolation scheme derived for discon-

tinous transonic flows. Examples of steady flows with

strong shocks computed with this method agree satisfactorily

with the Euler equation solutions, although the use of the

thin airfoil boundary conditions in the TSD theory can give rise

to errors near the leading edge.

An extension of the basic correction procedure for unsteady

transonic flow is given in Reference 6 where the low frequency

theorv of Ballhaus and Goorjian (Ref. 8) is extended by adding

a formally negligible third order term to the theory. The

.Lmrovement in the potential theory for flows with strong

shock waves is remarkable. The conventional theory failed to

give an answer. However, this theory still has some problems,

in particular, the agreement of the pressure distributions with

the results of the Euler equations is unsatisfactory ahead of

the shock wave. This is attributed to the global nature of the

strong shock correction affecting the flow dhead of the shock

wave as well as weakening the conventional potential shock.

Although all of the above theories have been vindicated

by computations the nuber of examples computed is very small.

Before any of these theories can be used in practice with

some confidence a much more detailed validation is required.



In the present work, therefore, the application of the strong

shock theory to unsteady flows will be tested in much greater

detail than has been done at present.

In the present study it is found that the pressure error

in the previous study is due to one of the additional parameters

being unconstrained. Also, it has been found that the theory

of Reference 7 is not easily extended to unsteady flows (see the Appendix)

The theory is extended to treat high frequency flows. The results

of the modified theory show a marked improvement over the

earlier work of Reference 6.

2. BASIC EQUATIONS

The basic differential equation used in the present

analysis is

(a+b + c)xx + C yy + AOxt + Bert = 0 (1)

where a, b, c are parameters to be chosen,

-21/2 /2/3 B = - 2 / 3 (2)

where M is the free-stream Mach number and v is the reduced

frequency. If 6 is the airfoil thickness parameter, c is the

airfoil chord and U. the free-stream velocity, then x,y,t,¢ are

normalized with respect to c, c/6 - c5 2 3 U where

is the oscillation frequency.

The high frequency boundary condition is

(x,±,t) 2= ( 0,t) + - (x,±0,t) (3)
y Z' x &t

where y = f(x,±0,t) denotes the upper and lower surfaces of the

airfoil in motion, respectively. The far field boundary condi-

tion is a nonreflective boundary condition of the type developed

by Kwak (Ref. 9) and is further developed by Whitlow (Ref. 10).
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In Figure (2), the steady pressure distribution and the

unsteady pressure jump, (C+ -C) - (C'-Cp) steady is shown for
p p p p~sed

a NACA 0012 airfoil at M. = 0.8, ao = 0.7* with a, = 0.250 and

= 0.6. It may be seen that the steady state shock has moved

location considerably. There is a considerable change in the

unsteady pressure jump. -

Figure (3) shows the steady and unsteady results for a

NACA 64 A006 at M, = 0.875 at ao = 0.0 with a flap deflection

of 1.00 and v = 0.470; the flap hinge is at 25% of chord.

This is case 10 from Ref. 11. It can be seen that while there

is a relatively small change in the steady pressure distri-

bution, there is a considerable effect in the unsteady result,

mainly due to the change in location of the shock.

In Figure (4), the results are shown for the flow around

a NACA 64A010 airfoil at M. = 0.796, ao = 0.0 with a pitching

amplitude of 1.010 and v = 0.404. The results are similar to

those of the previous example. This is case 6 of Reference 11.

Finally, in Figures (5) and (6), the results for an

NLR 7301 airfoil at M, = 0.721 and :e = -0.190 are shown.

These are cases 8 and 13 frcm Reference 11. There is a

double shock in this example, the first of which moves for-

ward due to the present modifications of the method for steady

flow, although the unsteady results do not differ significantly.

In Figure (5) , the airfoil is oscillating in pitch at v = 0.362

with amplitude 0.50. The unsteady result-differs considerably

from the original result. In Figure (6), there is a flap hinged

at 75% of chord oscillating at v = 0.362 with amplitude 1.00.

it should be noted that this result is for the third cycle; in

the modified method the fourth cycle diverged--the reasons are

not known.

13



4.2 Unsteady Flow

The code uses the theory outlined elsewhere except

that the values of a and 8 are computed only on the upper and

lower surfaces of the airfoil and these are used throughout

the appropriate half plane. This device is for coding simplicity

and assumes that the unsteady effects on the shock wave can be

characterized by the behavior at the shock foot. It is also

possible that instabilities in the algorithm could arise if

a,8 were varied along the shock. An instability did arise in

the steady flow part due to varying b,c in an injudicious

manner.

5. DISCUSSION OF RESULTS

One of the main purposes of the present work is to test

the ideas of the present theory over a range of cases. These

cases include some from Reference (10) and compare the present

method with the unmodified method.

The first case is the steady flow around a NACA 0012

section at M.= 0.8, a = 1.250, a case for which Euler equation

solutions are available. The comparison is shown in

Figure (1). It can be seen that the present result improves the

agreement with the Euler solution by weakening the upper surface

shock strength and moving its location forward slightly ahead of

the Euler solution. A similar overcorrection is seen on the

lower surface. This may be due to the strength being below

the "cut off" strength, in this case - = 5, and hencex x
the present correction is not applied to the lower surface flow.

It should also be noted that this solution is not fully converged,

the residual being about 9 x 10-3; however, the solution is not

obviously diverging. It should also be noted that the pressure

overshoot shown in the earlier work, Ref. 6, has been similarly

overcorrected.

12
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4. COMPUTATIONAL PROCEDURE

The theory developed in the preceding section was implemented in

the computer code XTRAN2L (Ref. 10), as follows:

4.1 Steady Flow

When a shock appears the strength of the small disturbance

shock is computed. If + *x is less than a specified value

then no alteration is required; at present the specified value

is 0.1. If the shock is sufficiently large, then the constant c

is chosen to give a shock with the Rankine-Hugoniot shock

strength. This is accomplished using the formulae of

Equation (16). Incidently, in some of the examples the exact

nonlinear formula for M2 gives an imaginary value; the code wase

modified to use the linear equivalent formula

2 = M2 + k62/3
e

where k is the transonic parameter. If c is found to exceed

,b /6, then c is kept at its previous value and b is modified

tc achieve the correct shock strength. This reduces the

likelihood of multiple parabolic points.

In order to retain a stable algorithm the coefficients

b,c are updated only every 50 iterations. Furthermore, the

values on the upper and lower surfaces are used throughout the

respective half plane until the residual is five times the

criteria for convergence or that the number of iterations

exceeds 90% of the total maximum specified iterations. The

correct field values are then used to increase accuracy and to

allow the intermediate field solution to reduce to its classic

form so that the boundary condition treatment is not compromised.

For each sweep over the airfoil the coefficients are updated

only if the shock strength exceeds by 10% the strength of a

previous shock calculated on the same sweep. This allows for

multiple shock waves and updates the coefficients only for the

first shock or the subsequent shocks if they are stronger by 10%

tnan the first. 11



f(u) = a + bu + cu 2

then

-- < 0 for a range of u

or

b + 2cu < 0

Let Umax be the maximum value of u in the range, then

-b
C < 2u c positive (30)

max

if umax = 4, say, then

ICI < 1/8 (31)

In practice a,b are approximately the same order of magnitude

and hence the inequality of Equation (29) is the more restric-

tive. Thus,

c << b 2/a

or
1 b

C = b (32)

which is used in the analysis; the value "1/8" is arbitrary.

10
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3. CONSTRAINTS ON THE COEFFICIENTS

There is a danger of the quadratic in Equation (1) term

having multiple roots that are physically not unreasonable but

which could destroy the algorithm stability.

The parabolic points of Equation (1) are

U -b ± [b 2 - 4ac)1 / 2u 2c (26)

If H << I and a- 0(1) then a Taylor's expansion gives
a b a

u- or _b + (27)

The proper solution is the first root since it has the correct

behavior as c - 0.

In order to avoid the second root it must be much larger

or smaller than the first so that it is not likely to appear in

a physically reasonable situation. In general, a > 0, b < 0

and lal and ibi are of similar magnitude and thus

if >0 then _b >> -a

c c b

and (28)

if <0 then -11<<

c c

Hence for the second root to be avoided, the following

constraints must be met.

' c] << IbI c negative
b2I (29)

c << -- c positive J
a

A further constraint is that the nonlinear term should be

monotonic through a range of u. Thus, if

9



If these equations are satisfied then, to first order

in shock motion, the shock will have a strength equal to the

Rankine-Hugoniot value.

For steady flow a is kept equal to its traditional value,

and b and c are altered to satisfy equation (16). There are

some constraints on b,c and these are discussed later.

For unsteady flow, c is kept equal to its steady state

value and

+ +

b=b s (0/ s) + x s  (22)

where the subscript s denotes a steady state value. The a and

8 are found by satisfying Equations (20) and (21). Thus,

a b {b [ [ - ' C] + c[24+ E

-~_ j+ a / -oEs/
2

s s (23)

2 /2 + c 2 ccs] -r + A} /(s - cEs/ 2 )s x= s[bs/2k+ C ssES

(24)

where

2M
2

aE e
= \)C Es M2 +(25)

where Me is the steady state Mach numiber ahead of the shock.



o=4.=[ 2 2 r YM 2 /
( x. O7Y (M e l)1 + 2~ C;JJp] + Vx5) 2s 3

1 (15)

The problem is now reduced to replacing a in Equation (8) with

CE.

Following the philosphy of the earlier work, the steady

shock strength is fixed first. Thus,
+ +2

a + b(O +  - a /2) + c( x  x s + o2s/ 3 ) = 0 (16)S s Sxs S E

This allows the constants, a, b, c to be chosen.

Next, the shock strength is expanded about its steady

state value. Thus, if

+F(4x,o,x s ) = 0 (17)
x 5

denotes Equation (8), then

+ ss ' Cs
FU~,cx )= (~0) + -+C-.-

x x x5  0+F+LL,-E oX 5
(18

xx

or, since

F(O + S, CEs, 0) =0 (19)

=L ; C 0 (20)

- + oE E =0 (21)

x x s



where Me is Mach number just upstream of the shock and is

defined as

M e=(U- x s)/a +  (10)

where 5 is the physical shock speed, U+ and a are the velocity
and speed of sound just ahead of the shock, respectively. Now

2 (+ 12 2 r T:lM2 +2 2
M ( e~ -) a. U /U.")31(

or

M2  M 2 ( - /U+)2 (12)
e es (

where Mes is the steady Mach number with 
the steady value of U

+

replaced by its unsteady value.

in the scaled coordinate of the present problem, the

physical shock speed is replaced by

Hence,

M2 = M2 [1 v/(U (13)
e e

s

Returning now to Equation (9); if the small disturbance pressure

relation,
+ 2/

Cp = -2(€ x +2vt)
6 /3 (14)

is used, then, with the help of Equation (8)

6
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The shock jump relation is

{a[ * + b 23 + - fd'x 3 xlY] 
s

- {A['x]I + B[t31 J = 0 (4)

where [ 3 denotes a jump across the shock. Since (dx/dt)s =s

the shock speed, is continuous through the shock, then

[%] = fox]5s (5)

and hence for a normal shock Equation (4) becomes

{a + .(+ + x ) + S + + + - -
A + Br s = 0

(6)

a shock strength, c, is defined by

= (7)
x x

-- .. ation () becomes

+++2

.a + b( x - a/2) + c 2- C + a 2/3))
x

- Xs {A + Bx s ) = 0 (8)

I
Consider now the one-dimensional Euler shock strength. The

pressure jump is given by

_2y 2S- 1 2-__ (M- 1 (9)
+ 

5+l 

e

p5
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APPENDIX

NOTES ON THE EXTENSION OF THE KLOPFER-NIXON
METHOD TO UNSTEADY FLOW

In Reference 7 a method is developed to modify the steady

full potential equation to treat strong shock waves. The

results of this method agreed better with solutions of the

Euler equations than the steady version of Reference (6) and

it is therefore instructive to see whether some of these

ideas can be extended to time dependent flows.

Consider the two dimensional Euler equations:

apu i

xt x i

Pui + i -
(2)

+Hu i  _ - 0 (3)
;xi

where

1u.; h = Ip/P (4)

For steady isentropic flow the energy equation can be integrated

along a streamline to give

h - uiui = constant=h O  (5)

and the isentropic relation

-PfP = constant = k p,/ (6)

can be used to give 1

+12 Mc 2 k

26



This relation is then used in conjunction with the conserva-

tion of mass equation and the irrotationality equation

u = " (8)i axi

To give an equation for #. In the usual case k = 1 but for the

strong shock case, k is allowed to jump at the shock wave.

For unsteady flow the energy equation cannot be integrated

and the necessary density/velocity relation is obtained from

the momentum equation.

Consider the x momentum equation in two dimensions

au + HRu + vau 1 _9

t ;x By P ax

Using irrotationality and the isentropic relation gives

+ i (u2 + v2 ) + Ck(p/pP"l (10)
x ~t 2 .x O)1

If h is constant, then Equation (10) reduces to the form

+ 1 (u2 + v) + Y k _ (11)

which can be integrated to give the unsteady Bernoulli equation.

1f k is allowed to jump through the shock then the equation is

I 1 1 2. _ {~~
x- + (u2 v 2 )  + k7x 7t -1 P . P

+' 0 (12)

27
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which does not give a simple density/velocity relation. Thus,
the application of the theory of Ref. 7 to unsteady flow is

more difficult than first envisaged.

I

I
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1. INTRODUCTION

In recent years multiple solutions to the numerical

approximation to the full potential equations have appeared in

Ithe literature (Refs. 1 and 2). Initially the phenomena appeared

in computations of the flow over a symmetric airfoil at zero

angles of attack whre two lifting solutions were present in

addition to the expected nonlifting solution. In Reference 2

some results, for a nonsymmetric airfoil, a RAE 2822 section, are

also presented. Steinhoff and Jameson (Pef. 1) suggested that

the change from one of the solutions to another is discontinuous

and noted a hysteresis effect indicating that the lift

coefficient (CL) depended on whether the angle of attack (a) was

increasing or decreasing. More recent work is by Salas (Ref. 2)

who has extended the computations of the flows considered by

Steinhoff and Jameson (Refs. 1) to show that it is possible to

construct a smooth CL - a curve connecting the three solutions

for a symmetric airfoil.

The investigations noted above are meticulously performed

and are essentially numerical experiments. There is a limited

g amount of understanding that can be gained from such experiments

and consequently a more analytic technique may yield additional

information. Furthermore, although the numerical results are

invaluable they do not exclude the possibility that the multiple

solutions are due to the numerical approximation to the

differential equation. The present investigation is based on the

integral equation formulation (Ref. 3) which allows some degree

of insight into the problem.

The objective of this paper is to suggest a possible reason

for the multiple solutions based on the existence of an

eiaensolution in the transonic small disturbance (TSD)

equation. It is shown that a ficticious lift can he added to a

---



I
"real" solution to give a multiple of solutions. It is also

indicated that the methods used to stabilize a numerical solution

are likely to indicate the appearance of the eigensolution.

2. INTEGRAL EOUATION ANALYSIS

The transonic integral equation method of Reference 3 is

only applicable to the transonic small disturbance (TSD) equation

rather than the full potential equation (FPE) that is used in the

earlier work. Consequently the first step is to reproduce

multiple solutions using the TSD equation. Once these solutions

are obtained they can be analyzed using the ideas of the

transonic integral equation theory.

2.1 Multiple Solutions for Small Disturbance Theory !
Since it is easiest at present to use the integral equation

theory to analyze small disturbance theory it is necessary to

reproduce the multiple solutions using the TSD equation. This is

achieved by usina the computer code TSFOIL (Ref. 4) which solves

the TSD equation using the conservative Murman-Cole algorithm and

grid sequencing. The multiple solutions are found for a

symmetric airfoil at zero angle of attack by imposing a 10 angle

of attack on the coarse grid solution and then putting the angle

of attack equal to zero in the medium and fine grid operations.

It is found that such a device leads to multiple solutions over a

small ranae of Mach numbers. Such solutions have been found for

a 11.8% Joukowski airfoil and a NACA 0012 airfoil. As a test for

convergence, the solution for the Joukowski airfoil at

M = 0.85 was converged to a residual of 1 0
- 9 . Krupp scaling

was used in these results; the default Krupp grid is used, which

has grid dimensions of 77 x 56. An example of a multiple

solution is given in Figure 1.

-2-
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2.2 Transonic Intearal Equation Theory

Since the analysis of the multiple solutions is based on the

integral equation theory it is helpful to outline the

formulat ion.

For Krupp scaling the TSD equation can be written as

(i - x)¢xx + y = 0 (1)

where if is the perturbation velocity potential in a Cartesian

coordinate system (x,y) then

2-
: k/B (2)

X = xy =

where

k = .+ 75 (3)

- 3 V
v = 3/v

If u t v -y then the physical perturbation velocity

components (u,v) are qiven by

u = (3 2 /k)u (4)

v= (6 3/k)v

In the formulation of Equation (1) the sonic line is given by

u = x=  1 (5)

The boundary conditions for Equation (1) are that

x' y+ 0 on the far field, that the tangency condition

Cy (xt) = y'(x,±O) - (6)

I

-3-
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It is of interest to note that if a stabilizina term of the

type used in TSFOIL, namely E xt is added to Equation (1), where

t is an artificial iteration time and E is a parameter, then an

analysis similar to that given in this section shows that this

term will assist the formation of a nonunique solution. This is

possibly the reason why the real solution cannot sometimes be

computed. The same effect is also present if the dissipation due

to the truncation error in the upwind difference scheme is

indicated in the analysis. In other words, a stable conservative

algorithm is likely to initiate the appearance of the

eigensolution g in the solution.

3. SUMMARY

The TSD equation can admit eigensolutions that satisfy all

of the boundary conditions generally found in such problems;

there are an infinite number of these eiqensolutions. For a

nonunique solution to exist certain consistency re.jirements must

he met. These eiaensolutions provide lift and act like an

additional asymmetric source term in the flow field. If real

lift is present the fictitious component provided by the

gnonuniaueness appears as a simple additive term to the real

liftina component; there is no way to distinguish or uncouple the

two components in a given numerical solution.

If, in a supercritical flow, an eigensolution does appear,

$the location of the shock waves changes from their real

location. The nonuniqueness may be removed in some steady cases

by using a nonconservative/conservative algorithm which may

inhibit the appearance of such solutions. However, there is no

o auarantee that this will work in all cases. This partial cure

only works for steady flows; it is possible that for unsteady

flows that a "strong shock" theory of the type advocated in

Reference 8 could remove any nonuniqueness. The (necessary)

-17-



lower surface shock moves forward. It follows that the source

term introduced by the shock on the lower surface now acts at a

further forward location while the countering source on the upper

surface moves aft. Consequently, there is a considerable region

between the shocks for which

A[aiH(x-X S.)] < 0
1

This counters the positive g and reduces the tendency of the

nonunique solution to appear. However, it is necessary to point

out that the nonconservative source error must be large enough to

counter the g terms. The nonconservative algorithm only inhibits

a nonunique solution from appearing; it will not necessarily

remove an existing error. A similar analysis can be performed if

the fictitious lift is negative. This hypothesis was tested by

using the computer code TSFOIL (Ref. 4) which has both

conservative and nonconservative algorithms. A composite

alaorithm, given by

Algorithm = X (conservative) + (1 - X) (nonconservative) (65)

was used. The parameter, X, was taken to be given by

X = -E I [CL(t+At) - CL(t)l I  + 1 (66)

where t is the artificial iteration time and At is the iteration

step. At converqence X = 1 and the solution is conservative.

It was found that for the nonunique solutions to be avoided in a

computation of the example in Figure 1 E[CL (t+tAt) = CL (t)] had

to be of order unity during most of iteration. Smaller values

did not inhibit nonuniqueness. Hence it is suggested that the
"classic" degree of nonconservative algorithm is necessary to

stop the appearance of nonunique solutions.

-16-
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It is of interest to note that the foregoing analysis is

based on the boundary conditions of Equations (6) which are in

similarity form. Hence a nonunique solution can appear for a

range of thickness and camber parameters provided the Mach number

is changed so that the similarity boundary conditions are

unchanged. This is consistent with the numerical evidence of

Salas et al. (Ref. 2).

2.7 Non-Conservative Algorithms

A non-conservative algorithm, such as that of Murman and

Cole (Ref. 7) adds source terms at the shock waves. Hence the

algorithm is solving conservatively a differential equation of

(l-bx) xx + '1yy [a iH(x - xs i x (60)

where ai(y) is a source term at the shock location xsi and

H ( ) is the step function. The strength of the source term is

not known explicitly in non-conservative algorithms.

If the asymmetric part of Equation (60) is taken then

Oxx + A yy = (AuU)x + A[GiH(x-x s. x (61)

If Equation (61) is added to Equation (44) the following result

is obtained.!
( +G) xx + (AO+G) = (Auu) x+ (g + A[ciH(x-x s. x  (62)

1

If a ficticious positive component of lift starts to appear

in a solution, g will change from zero to a predominantly

positive quantity, since g is equivalent to (Auu). This

introduction of positive lift will change the location of the

shock waves such that an upper surface shock moves aft while a

-15-



If there is a real lift due to the boundary condition of Equation

(6) then Equation (24) gets replaced by

fSlfK*y [f+f - Ic ]dd (57)

where I is given by Equation (28) and f* is a function thatcL

satisfies

fS f If - c L]ddn = 0 (58)

and

f 
cL

The analysis described above is unchanged if f is replaced* f*

by f + f since f always occurs as part of the term f + f; in

this case f + f must satisfy Equation (57) rather than Equation

(24). Also, since f alone will satisfy Equations (56) and (57)

there must be at least two consistent solutions for f + f for

multiple solutions to exist.

Equation (56) can be written as

+ If + g) 21+q 2=q u +4 u
(g+If - ig-- + S If ) =  L U A

gf 2 g+I f f LS LA 2? 1 xS If +g
+4g+If] 2d~dn

+g+T f2 d~n(59)

where

-f0/(l-U 0 ) y
ULA =J (x-) 2+ y2  d

Since the addition of the uLA term has the same effect as

introducing camber into the airfoil a nonunique solution

generally will have a different shock location than a real

solution.

-14-



I = - (53)

g + I f

it also follows from Equation (53) that

uAU = g/ = g + If (54)

i From Eauation (34)

U foA 0 =

0

and if the limit as y + 0 is taken of Equation (31) and if

Equations (53) and (54) are used then

-2 u fo 2 1 9i2 2
u + _f____)_ I__ liw [S f 2 + (+ d

0 - - LS 2 U0 - 1 4 1  x (g+f) f

(55)

where uLS is the value of ULS at y = 0.
0

Since f is assumed known and ULS° is known, Equation (55) is an

equation for uo .  Hence g can be found.

Using Equations (58) and (59) to eliminate u and Au in

Eauation (33) it follows that a nonuniaue solution only exists if

there is a solution f, to the eauation

a s1 2= u +l (+1)21 02 + (g+I)2]ddn- g (g+If)2  (+f

a+I 2 g+If LS 2 f 7r 1 x& d fdf

(56)

This solution must also satisfy Equation (24). For a real

nonlifting case a nonunique solution will appear if a nonzero

value of f satisfies both Equations (24) and (56).

I
I -13-



(49) are similar in form to Equations (1) and (6) if 0 is

identified with + G. . The numerical algorithm will solve

Equation (48) in an identical manner to the real solution.

If there is real lift, that is a value that is calculated

with no eigensolutions, then the lifting solution of Equation

(38) can be added to Equation (48) to give

AG + ( - AO+G)yy 1( + Au+)2] x  (50)(0 +  u+G))xx

u

where "*" denotes a real lifting component. In this case Au on

the right hand side of Equation (41) is identified with

[AU + g/-].

The boundary condition is

y(X,±O0) + Ay (x,±0) + G (x,±0) = Y'(x,±0)- A (51)
y y y s

Again a ficticious lifting component G(x,y) is added to the

equation without a change in the boundary conditions. If G is

present the numerical algorithm will solve Equation (50) in an

identical manner as the real solution. It is not possible to

decouple the real and ficticious components.

In the preceeding analysis u has been assumed known. For a

solution to exist it also must be a solution of Equation (31).

Equation (37) can be written as

i-u) g = fSlfK~x fd~dn = 1 (52)

where g is given by Equation (46). It follows from Equation (52)

that

-12-
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Now Equation (37) can be modified to give the integral equation

+ fO/(1uy = 1 fK gd~dn (43)
- l/ 2+ 2d _ -

u 271-(x-) + y 1 7X

which can be written in differential form as

Gxx yy 9x (44)

where

G(x,y) = x - 1 g ( ,y) d (45)
u( ,y)

and

g(Ey) = f(E,y) - f(E,O) (46)
1-u ( ,o)

with the boundary condition

G (x,±O) = 0 (47)
y

In the far field G behaves like a point vortex.

If G(x,y) is identified with a lifting term A then

Equations (41) and (44) can be added to give

+ G) + 1+ [G) + 9]2 (48)
( + )X #+Gyy 2 x

iy(x,±O) + G (x,+O) = 1 [Y'(x,+O)-Ys(X,-0)l (49)
y y 2 s

where Au on the right hand side of Equation (41) has been

identified as g/-u. Thus a ficticious value, G, can be added to

a purely symmetric problem, denoted by , to give lift; the

boundary conditions are not affected. This is the mechanism of

the appearance of the nonunique solutions. Equations (48) and

-11-



(32). Hence for a nonunique solution to exist Au, as defined by

Equation (35) must be compatible with Equation (32). I
Substitution of Equation (33) into Equation (32) gives

u-Auo = f- 1 ' fKs x (36)

or, using Equations (34), (35)

[f - fo (l-u)] = f - L- JSfK f d~dn (37)

u (1-uo) 4 1

The basic differential equation, (1), can be decoupled into

symmetric and asymmetric parts. The asymmetric part is

Xx + A =yy = (A'u)x (38)

where

AW(x,y) ,y) = (x,-y)] (39)

the boundary condition is

A (x,o) -i + [Ys(x,+O) + Y'(x,-0)] (40)
y 2 ss

The symmetric part is

1xx +  xx - + Au 2x (41)

with

7y(xo) = [Ys(X,+0) _ I (x,-0)] (42)
y 2 -



i

Equation (10) can be manipulated to give the followina symmetric

and asymmetric parts.

u(x,y) _ u 2 (x,y) + Au2(xy)] = UL 4f fK [U2 (,n) (31)
2LS 4 l Trs E

I+Au 2 (6, n)j]d~dn

Au(x,y) - AU(X,y)u(x,y) = - fk [U 2 ( ,n) - u2 (t,n) (32)

-2Au(E,o)]d~dn

These equations will he used in the following sections.

2.6 Analysis of Multiple Solutions

If in Equation (24), f( ,n) is known then Equation (23)

aives

1 2 2
1 [u ( ,n) = U2( ,n)-2Au(,0)] = Au(E,n)u( ,n) - Au(&,0) -f(&,n)

(33)

If u(&,n) is known then this is an equation for Au(&,n) in the

flow field and gives

fo
Au = -l (34)

0A 0
where

f = f(&,O) etc.-

also

A f+ AU o ff fo (35)
u u 1-u

0

In the transonic solution Equation (16) only gives the value of

Au( ,o) or Au0 , the value of Au(x,y) being found from EquationI o

I -9-



where for 0 < x < 1

(x) 1 1 - x 1/ 2 fl -A + [Y'() + Y()

C(L X) x 0 (x-(

(28)

and

I (x) = 0; x < 0, x > 1;cL

u(E,n) is a transonic solution subject to the arbitrary boundary

conditions in Equation (6). Since the boundary condition is

arbitrary, and therefore an infinite number of boundary

conditions can be applied, it follows that an infinite numbe- of

solutions u(E,n) exist.

Equation (28) is identical in form to Equation (24) with

f( ,n) given by.

f(&,i) = u 2 ( ,) - u(,-n) - 2Au( ) -21 ( ) / 0 (29)

Since there are an infinite number of transonic solutions it

follows that there are an infinite number of eigensolutions

f(&,n). A justification of a nonzero f(C,) is given in the

Appendix.

2.5 Symmetric and Antisymmetric Integral Equations

Let u (&,n) and Au(&,n) be defined by

1U ( , = (U(Er ) + U(C,-n)] (30a)

Au( ,r) = -(n) + U(&,-n)] (30b)

-8-



f fsfkE [U2  
TO = u2(,2n) - 2Au( )]d Fdn = 0 (23)

where S1 covers half of the domain S. Equation (23) can be

written in the more compact form.

fsflk yf( ,n)d~dn = 0 (24)

where

, = u2 (,n) = u2 (,-n) = 2Au(C)]

One solution of this integral equation is

f(E,)) = 0 (25)

which is the symmetric solution for the airfoil problem. A

nonsymmetric solution can be obtained if there is one or more

functions f(C,n) = / 0 that satisfy Equation (24). If there are

such solutions then a multiple solution in transonic flow can

exist if the equation

1 ( ,n) = u 2 ,-n) - 2Au( )] = f(&,n) (26)

has a real solution for u( ,).

2.4 Existence and Nature of Eigensolutions

It is desirable to determine the existence and the nature of

the eigensolutions, f(F,f) of Equation (24). Consider Equations

(16) and (18). Using the inversion procedure that leads to

Equation (20), Equations (16), (18) can be written in the form

fS1 fK y ((u 2 ( ,n)-u 2 (& ,- n) -2Au(E) -2IcL( )]dfn = 0 (27)

-7-



This integral equation is valid for shock waves normal to

the freestream; if the shocks are not normal to the freestream a

modified integral equation is used (Ref. 6). Since the

formulation changes are negligible the above set of equations

will be used in the subsequent discussions for clarity.

In the solution of the integral equations the circulation is

qiven by Equation (16) although it should be emphasized that

Equations (10) and (16) are not independent. The solution of

Equation (16) is found by inverting the integral equation to give

Au(x) - Au2 (x) = u (x) - 1 1 -x / 2 1 c) ) 1/22 =LA- ( 0 x - & 1 --
(20)

where ULA is the antisymmetric solution of Equation (1) without

the nonlinear terms and is given by

1 ] 12[1 - A + I[Ys(C,+0) +Y,( ,-0)] _1 _

u (x,0) =1( 1 -x ) + 2) s sC) 1/ 2 d(
LA iT x o(x -~

(21)

The inversion procedure invokes the Kutta condition.

2.3 Application of the Integral Equations to Multiple

Solutions

Consider for the moment the case of a symmetric airfoil at

zero angle of attack in this case

= 0 (22)
Y (x,+0) = -Y (x,-0)

and the left hand side of Equation (16) is zero. A manipulation

of the inteqrals in Equation (16) leads to the equation

-6-



where

SAU(E) = [U(E,+0) = U(E,-0)]/2 (13)

The Kernel function K(x, ;y,n) is given by

K(x, ;y,n) = I n [(x - )2+ (y _ n)21 (14)

The integral IT is given by

IT(u) = -1 fsfK x(x,;Yn)u2 (,n)dS (15)

The domain S is shown in Figure 2.

If y = ± 0, Equation (10) gives (see Ref. 5) only the

symmetric part of the solution and the antisymmetric part is

civen by

-A 1 [Y'(x,±D) + Y(X, -0)-= 1 1 [Au( ) - Au ( )/2] d + I (x)2 s 0 x - c
(16)

where

Au2 = [u 2 (E,+0) - u2 ( ,-0)1/2 (17)

and

( 1X) - j k (xE;On) [u 2 ( ,n) u2 (E)]dS (18)

where

I2 (19)

-2 u (E,+0), n > 0

u () = u2 (&,-0), n < 0

-5-



is satisfied and that the Kutta condition of zero velocity jump

at the trailing edge and on the wake is satisfied. In Equation

(6)

Y s(x,±0) = k/ 3Ys (x,±O) (7)

where y = Y (x,±0) denotes the geometry of the airfoil on itss

upper and lower surfaces, respectively. A is given by

= k a (8)

where a is the angle of attack, although it should be noted that

in the formulation used in TSFOIL

= k/3 M -1/4a (9)

The basic idea of the integral equation method is to use Green's

theorem to write the differential equation, Equation (1), and its

associated boundary conditions in integral form. A detailed

description of the method is given in Reference 5.

For y A 0 the integral equation is given by

u - u 2/2 uLS + uLA + IT(U) (10)

where

U11 (xy) _ 2 f [Y('( ,+0) - Y'( ,-O)] Kx(X, ;y,O)d (11)

and is the solution of Equation (1) without the nonlinear terms,

u (x,y) f Au ( )K (x, ;y,O)d (12)
LA x y  0

-4-



stability terms used in alqorithms tend to initiate the

appearance of eigensolutions thus making the computations of a

real solution different.

Since the behavior of the nonunique solutions is identical

to that of The real solution the question arises as to whether

these solutions are physically realizable. An analysis of the

Navier-Stokes *;r, possibly, the Euler equations is necessary to

determine this.
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APPENDIX

Further Comments On The Nature of Eigensolutions

It is possible that the only solution to Equation (27) is

f(&,n) 0 (Al)

In this case

Au - Au - I = 0 (A2)o cL

and

IcL
Au I (A3)

u -1
0

u
Au=-I -s- (A4)

CL u -1
0

If Equation (A2) is substituted into Equation (32) it follows

that

Au - AU I I f L 2 2 (A4)
7r 0 (x_0 2+ y

The right-hand side of equation (AS) can be recognized as

Au LF the linear value of Au in the flow field. Hence Equation

(A5) becomes

Au (1--u) = Au L (A6)

It can be seen that as U+ 1 Au becomes infinite which will

qive an expansion shock. Consequently, Equation (Al) cannot be

the correct solution of Equation (32); a nonzero value of

f( ,n) must exist.
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APPENDIX 3

f Velocity induced by a Moving Blade

The object is to estimate the induced upwash at some station

y due to the oscillatory motion of a blade at y = 0. It is

assumed that y is sufficiently far from the oscillating blade

that linear theory can apply.

From classic subsonic theory the velocity potential in the

far field is qiven by (see Reference 15)

W it im 2(
(Kr) 1 /2 exp[-i(Kr-4)]e ci)

where

r (x2 + y 2)1/2  (2)

and

V - 2 )1/ 2y
K -M 2 y = (3)

Far from the moving blade x can be taken as zero and, on

differentiation with respect to y,

A eii/4 - iK iKyv(Oy) = M2 ) 2 K1/2  23/2 /e (4)

as y +, v(o,y) can be approximated by

!
-iA KI / 2  iKy ir/4

v(o,y) = (I-M 2 ) 1/2Y1/2 e e (5)

-iKy
= A e-72 (6)

where A is a complex constant.
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APPENDIX 4

by Alfred Ayoub

Convergence of the Series

ina

nl7172ee
n=l n

e ina

The convergence of the series 1/2 is due primarily to
n=l n

inathe cancellation effects provided by the tefse , as the series
1 e
1/2 is diverqent and therefore 1/2 is not absolutely

n=l n n=l n

convergent.

For values of (- for which an integer p exists such thatW Ia

pa = -, the series e 2 can be reduced to an alternating
n=l n

series by grouping all consecutive terms of the same sign; the

series that follows has monotonically decreasina terms and is

therefore convergent.

While a somewhat similar approach can be followed for an

arbitrary a, the procedure tends to become suite complex. The

following proof of convergence on the other hand is more direct

and exploits equally well the alternating character of e ina.

a in i i 2a ina

e 2 la= e + 1/2 + ... + e1/2

n=l n 2 n
1 )eia ( eia+ i 2a)

21/2 1+ ( /2 3; /2 ( e

e I e + ... + in) +...
n I  /2  ( n + l 1 / 2
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co ina Go

or I e [_ n I i+ eina

n 1 2  n = 1/2 (n+l) 1/2]  (e + . + e

The series on the right hand side of the above identity is

absolutely convergent since:

1 1 (ei + eina) 1 1-e i n

n 1/2 l1/2+ *+e ) < 2n3/ 2  e i,

12 is convergent (by Cauchy's integral test)

and leina 2
and = sin na/2

1-e sin a/2

1 finite and independent of M

sin 2 a/2 for a * o, 2w,...

It follows that the series

___ 1 1 ii e i
1/2 1/21 (e + ... + e

n=l n (n+l)

is convergent and hence 7 e is convergent.

It is interesting to note that the same proof above applies

to all series of the form I a bn where I b is bounded but not
n=l n=n

necessarily converqent and the terms an are all positive or all

necative and an tends to zero monotonically as i_ where r is anynr
positive exponent.
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